TEACHERS’ PERCEPTIONS OF EFFECTIVE INSTRUCTIONAL STRATEGIES BASED ON DISCOURSE IN TERMS OF IMPROVING ENGLISH LEARNERS’ LISTENING, SPEAKING, AND WRITING SKILLS

A Thesis Presented to the Faculty of California State University, Stanislaus

In Partial Fulfillment of the Requirements for the Degree of Master of Arts in Education

By Donna A. Clarke
May 2013
CERTIFICATION OF APPROVAL

TEACHERS’ PERCEPTIONS OF EFFECTIVE INSTRUCTIONAL STRATEGIES BASED ON DISCOURSE IN TERMS OF IMPROVING ENGLISH LEARNERS’ LISTENING, SPEAKING, AND WRITING SKILLS

by
Donna A. Clarke

Dr. Chet Jensen
Professor of Education

Dr. John Borba
Professor of School Administration
DEDICATION

I dedicate this thesis to my husband, Larry Clarke, and my children, Alex, Dani, and Gabby.
ACKNOWLEDGEMENTS

For the past 3 years I have been privileged to participate in the Stanislaus County Mathematics Partnership under the direction of Jan Wood. The professional development and lesson implementation will have a lasting impact on my teaching and development as an instructional leader. The student’s voice in learning will always be a focus of mine.

I want to thank my thesis chair, Dr. Chet Jensen, for all his support and encouragement. His patience and direction have allowed me to complete this thesis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication iv</td>
</tr>
<tr>
<td>Acknowledgements v</td>
</tr>
<tr>
<td>List of Tables viii</td>
</tr>
<tr>
<td>Abstract ix</td>
</tr>
</tbody>
</table>

CHAPTER

I. Introduction

- Discourse .. 2
- Local Mathematics Performance 4
- Norms and Equity 6
- Statement of the Problem 7
- Hypotheses 9
- Significance of the Study 9
- Definition of Terms 10
- Limitations of the Study 11
- Delimitations of the Study 12
- Summary .. 12

II. Review of the Literature

- Pedagogical Framework 15
- Discourse 16
- Norms and Equity 18
- English Learners 20
- Instructional Strategies 22
- Wait-Time 22
- Choral Response 23
- Pair-Share and Think-Write-Pair-Share 23
- Response and Sentence Starters 24
- Paraphrasing 25
- Affirmations 25
- Scaffolding Questioning 25
- Justifying Answers 26
- Targeting Academic Language 27
- Developing Discourse Norms 27
- Random Selection 28
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Percent of Students Proficient on 2012 Mathematics STAR Testing</td>
<td>5</td>
</tr>
<tr>
<td>2. Chi-Square and Descriptive Analyses</td>
<td>35</td>
</tr>
<tr>
<td>3. Listening: Mean Responses Ranked in Descending Order</td>
<td>45</td>
</tr>
<tr>
<td>4. Speaking: Mean Responses Ranked in Descending Order</td>
<td>46</td>
</tr>
<tr>
<td>5. Writing: Mean Responses Ranked in Descending Order</td>
<td>47</td>
</tr>
<tr>
<td>6. Common Themes</td>
<td>48</td>
</tr>
</tbody>
</table>
ABSTRACT

The purpose of this study was to determine teachers’ perceptions of the instructional strategies based on discourse that are most effective in improving English Learners’ (ELs) listening, speaking, and writing skills. An online survey was distributed to fifth and sixth grade teachers participating in a 3-year mathematics grant to strengthen their pedagogical knowledge of discourse. Thirty-three respondents completed 12 statements relating to teachers’ perceptions of the effectiveness of instructional strategies used based on discourse in terms of improving ELs’ listening, speaking, and writing skills. In addition, respondents were provided with an open-ended response field to submit written comments. The researcher found that respondents perceived targeting academic language and requiring students to justify their answers were highly effective strategies in improving ELs’ listening, speaking, and writing skills. As school districts move toward implementing the Common Core State Standards, administrators must continue to address the challenges ELs face in accessing core content areas. The researcher recommends that school leaders provide professional development to enhance teachers’ ability to (1) develop the language and content knowledge of ELs, (2) enhance ELs’ skill in justifying their answers, and (3) create classroom environments where discourse norms are established.
CHAPTER I
INTRODUCTION

In a technological world, students need a factual, procedural, and conceptual understanding of mathematics to compete in the world economy (Bransford, Brown, & Cocking, 1999). The Organization for Economic Cooperation and Development’s [OECD] (2012) Program for International Student Assessment [PISA] stated that a competent understanding of mathematics is a fundamental element for problem solving, reasoning, and higher level thinking in an adult world—particularly in terms of personal, occupational, societal, and scientific challenges.

During the past decade, the No Child Left Behind (NCLB) Act of 2001 and the Public Schools Accountability Act (PSAA) of 1999 have impacted the culture of education and consequently instruction in the United States. The Annual Yearly Progress (AYP) and Annual Performance Index (API) are utilized to report public schools’ progress toward target goals in student achievement as measured by state-mandated tests. Schools not meeting these targets are sanctioned. Each year the target requirements for schools increase incrementally toward 100% student proficiency on California Standards Tests (CST) in English Language Arts (ELA) and mathematics by 2014.

In the process of implementing NCLB, politicians unintentionally created an educational system that trains students to fill “commodity jobs” in a world that needs innovators and problem solvers (Shaffer & Gee, 2005). A commodity job is
employment that can be outsourced whenever trained employees will work for less. Schaeffer and Gee stated that the federal government’s implementation of yearly standardized tests as an accountability measure for public schools has produced students with standardized skills who will not be able to compete globally. Subsequently, due to time constraints and test-driven school cultures, many classroom teachers do not move beyond skills-based mathematics instruction. As a result, students learn the procedures for answering problems without acquiring conceptual understanding (Jennings & Mills, 2009).

In 2003, the OECD (2003) conducted a longitudinal study of 15-year-old students from selected industrial countries by evaluating their skills, knowledge, and ability to participate successfully in society. The authors found that U.S. students scored below average on mathematical literacy compared to other countries. Specifically, OECD defined mathematical literacy as “an individual’s capacity to identify and understand the role that mathematics plays in the world, to make well founded judgments, to use and engage with mathematics in ways that meet the needs of that individual’s life as a concerned and reflective citizen” (p. 24).

Discourse

Gee (2001) defined mathematical literacy as emphasizing the use of language. He stated the ability to read, write, listen, and speak a language is important to arbitrate the functions of mathematics. Literacy is linked to the ability to communicate ideas. Specifically, Gee described *discourse* as the social and academic communication medium that humans use to agree, disagree, reason, and navigate a
particular context.

For over a decade, The National Council of Teachers of Mathematics (NCTM) has advised educators to emphasize speaking and writing during mathematics instruction (Chapin, O’Connor, & Anderson, 2003). In their 1991 professional standards, NCTM defined discourse as the way ideas are exchanged and shaped by student tasks and the learning environment. Through discourse, students defend and explain their ideas with peers and the teacher thereby helping them progress toward mathematical literacy (Shaffer & Gee, 2005).

The National Governors Association Center for Best Practices (State of Delaware, 2010) and the Council of Chief State School Officers (2010) developed the Common Core State Standards Initiative (CCSSI) in collaboration with teachers, administrators, and content experts. The authors of the Common Core State Standards (CCSS) proposed narrowing the number of standards and increasing the rigor of instruction through writing and speaking in both mathematics and English Language Arts to help U. S. students prepare for college and the future workforce. The Council of Chief State School Officers (CCSSO) outlined the knowledge and skills necessary for students to be successful in postsecondary education and to obtain entry-level employment. The National Governors Association (NGA) Center promoted learning by including a focus on academic discourse for all learners.

In an effort to ensure that all students receive rigor and equal access to mathematical learning, the CCSS addressed the need for English Learners (ELs) to focus on more than vocabulary, pronunciation, and low-level language skills. ELs are
able to participate in classroom discussions while they struggle with mathematical concepts and learn a new language. All students need to be supported in communicating mathematical ideas regardless of their English proficiency (Moschkovich, 1999).

Equally important, in 2008, the National Advisory Panel of Mathematics (as qtd. in Kilpatrick, Swafford, and Findell, 2001) stated that the teacher’s role in student success is vital and advised that mathematics preparation of elementary and middle school teachers needs strengthening: “Teachers have the responsibility for moving mathematics along while affording student opportunities to offer solutions, make claims, answer questions, and provide explanations to their colleagues” (Kilpatrick, Swafford, & Findell, 2001, p. 345). The NAPM suggested that more research be conducted to explore why certain teachers achieve higher levels of student achievement than others. In addition, the panel proposed employing full time mathematics specialists to provide professional development to increase teacher effectiveness in mathematics instruction. Ultimately, teachers are "the most important school factor in how much children learn" (Colvin & Johnson, 2007, p. 36).

Local Mathematics Performance

In Stanislaus County, 23.7% of public school students met federal performance targets by scoring proficient or advanced in mathematics on the 2008 California Standards Test (CST). However, student performance continued to decline at certain grade levels. For example, the percentage of students who scored proficient declined at third grade and decreased sharply at fifth grade. During 2009, when
proficiency targets increased to 45.6%, students in second through fifth grades met the goal, while students in sixth grade and seventh grade did not. Overall, student proficiency declined by 13% between second and seventh grade.

Unfortunately, test results from the 2012 CST in mathematics indicated that student performance continued to decline in Grades 5, 6, and 7, with the achievement gap widening for ELs; Table 1 displays the decrease in students who scored “proficient” on the 2012 Mathematics STAR test. Specifically, the difference in the percentage of English-Only (EO) and EL students scoring proficient in mathematics grew from 11% in the second grade to 34% in the sixth grade (Dataquest, 2012). Clearly, more research is needed to determine effective instructional methods that will improve fifth, sixth, and seventh grade EL students’ learning in mathematics.

Table 1

Percent of Students Proficient on 2012 Mathematics STAR Testing

<table>
<thead>
<tr>
<th>Grade</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>County All 2012</td>
<td>60</td>
<td>63</td>
<td>65</td>
<td>57</td>
<td>47</td>
<td>45</td>
</tr>
<tr>
<td>County EL 2012</td>
<td>52</td>
<td>54</td>
<td>57</td>
<td>37</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>County EO 2012</td>
<td>63</td>
<td>63</td>
<td>67</td>
<td>61</td>
<td>51</td>
<td>49</td>
</tr>
</tbody>
</table>

Source: DataQuest (CA Department of Education) (2012)
Norms and Equity

Although many students are struggling to achieve mathematical literacy, there are individual teachers creating learning environments where students are successful. Jacobson and Lehrer (2000) attributed these teachers’ success to their ability to orchestrate discourse. Classroom talk in these classrooms was more refined and highlighted important ideas during instruction. Clearly, teachers need knowledge and skill to integrate discourse in their classrooms.

In studying the implementation of discourse, Yackel (2000) emphasized the importance of establishing a classroom environment that supports inquiry based learning. The researcher stated that teachers need to develop classroom and social norms that prepare students to share ideas during mathematical discussions.

Classroom norms establish an expectation that all students use academic vocabulary and participate by asking questions, solving unfamiliar problems, and listening to mathematical arguments.

In addition, Yackel (2000) emphasized the social component of learning that promotes stronger relationships between teacher and students. Social norms define how students and teachers should behave and interact in the classroom community. Genuine discussions are those conversations that move beyond procedures or numbers to inquiry and argumentation about the concepts of mathematics.

In a 4-year study, Boaler and Humphreys (2005) found that certain teachers were able to create classroom environments where students collaborated and supported each other through discussion. In these classrooms, students valued the
process of sharing ideas and understood the benefit of explaining and justifying answers with their peers. When students demonstrate mutual understanding they provide support for each other and give consideration for all ideas shared during discussion by agreeing and disagreeing in accordance to classroom social norms. Certain teachers in the study were able to establish successful learning environments where ELs and other significant subgroups performed successfully on state tests. Furthermore, students in these classrooms valued their peers’ ideas and the benefits of argumentation. These teachers applied certain teaching practices that promoted equity for all students.

In terms of research, teachers are in a unique position to offer expert opinions regarding the establishment of classroom norms and determining classroom practices that promote equity for all students during mathematics instruction.

Statement of the Problem

Student achievement in mathematics is falling off after the fifth grade: Although more students in Grades 2 - 7 are scoring higher on mathematic CSTs, student achievement continues to decline beginning in Grade 5” (Rosin, Barondess, & Leichty, 2009, p. 10). This trend persists in Grades 6 and 7, where larger numbers of students score below or far below basic on the CSTs in mathematics. Moreover, ELs continue to lag behind their peers and show a steeper decline in Grades 6 and 7 on state tests. Researchers believe the source of this deficit is inadequate mathematical preparation in earlier grades and the need for teacher professional development (CCSSO, 2010).
As a result, attention has been given to teacher preparation to improve the quality of mathematics teaching. Research supports that students who receive high-quality instruction achieve greater gains academically than peers who receive lower-quality instruction. Conclusively, teachers are the most important factor affecting student learning. (Marzano, Pickering, & Pollack, 2001).

Accordingly, district administrators in one California unified school district in Stanislaus County addressed building teacher instructional effectiveness by developing a 3-year grant emphasizing mathematics professional development for fifth and sixth grade teachers. Participating mathematics leaders and teachers incorporated research-based strategies and professional development that supported the objectives of the CCSS (Ford & Jones, 2008). In addition, the grant included a focus on implementing discourse to increase teacher effectiveness and student engagement.

Clearly, there is a need for additional research that describes effective instructional strategies that best support discourse during mathematics instruction particularly for EL students who are unable to comprehend and utilize the academic language necessary to be successful in mainstreamed classrooms. Therefore, the purpose of this study was to determine teachers’ perceptions of the instructional strategies based on discourse that are most effective in improving ELs’ listening, speaking, and writing skills.
Hypotheses

The following hypotheses were established to guide the quantitative analysis of the data:

H_1 – There is no significant difference in the distribution of responses on a survey of teachers’ perceptions of effective instructional strategies based on discourse in terms of ELs’ listening skills.

H_2 – There is no significant difference in the distribution of responses on a survey of teachers’ perceptions of effective instructional strategies based on discourse in terms of ELs’ speaking skills.

H_3 – There is no significant difference in the distribution of responses on a survey of teachers’ perceptions of effective instructional strategies based on discourse in terms of ELs’ writing skills.

Significance of the Study

More students in the U.S. fail mathematics than any other subject (Steen, 2007; Schmoker, 2011). However, certain teachers are able to bridge the academic achievement gap through effective strategies and instruction. What makes certain educators successful? What instructional strategies and classroom norms need to be present for all students to achieve mathematical proficiency? The results of the present study may provide decision makers and practitioners with insight regarding how to increase student academic success, specifically ELs in fifth and sixth grade mathematics classrooms. Moreover, the perceptions of these teachers may provide information on instructional strategies and norms that are most beneficial for
implementing discourse and promoting equity in the classroom. More specifically, this study will generate discussion on which discourse strategies and norms best support the academic success for ELs.

Definition of Terms

Academic language. Used to describe thinking processes, complex ideas, and abstract concepts.

Common Core State Standards Initiative (CCSSI). A state-led initiative coordinated by the NGA Center and the CCSSO to provide a clear framework to prepare students for college and the workforce.

Council of Chief State School Officers (CCSSO). A nonpartisan group of public officials who lead elementary and secondary education departments and provide leadership on major educational decisions.

English Learner (EL). The term used in California to describe students whose primary language is other than English and who are working to acquire a minimum level of English.

Discourse. Written or spoken debate.

Equity. The quality of being fair and impartial so that students receive equal access to a quality education.

Mathematical literacy. The capacity to identify, understand, and engage in mathematics, and make well-founded judgments about the role mathematics plays in an individual’s life.

National Council of Teachers of Mathematics (NCTM). Global leader and
National Governors Association Center for Best Practices (NGA Center). A research development firm that serves state governors in developing solutions for public challenges.

No Child Left Behind (NCLB) Act of 2001. The major elements of the law signed by President Bush in 2002 that focuses on accountability based on state testing programs, state adopted standards, parent choice and scientifically based instruction.

Norm. A standard or pattern that is expected of a group.

Organization for Economic Cooperation and Developments (OECD). An international organization that helps governments solve economic, social, and governance of a globalized society.

Program for International Student Assessment (PISA). A system of international assessments that focuses on 15-year-olds’ capabilities in reading, mathematics, and science literacy, coordinated by the OECD.

Public Schools Accountability Act of 1999 (PSAA). Authorized the creation of an accountability system for California schools.

Limitations of the Study

The following limitations were considered in the analyses of the responses provided by the participants in this study:

1. The truthfulness of the participants’ answers is assumed. The researcher realizes the possibility that teachers surveyed may not be completely honest.
2. The candor of the participants. The researcher recognizes the possibility that the teachers interviewed may answer according to what they feel is expected of them as participants in the grant.

Delimitations of the Study

The following delimitations were not considered in this study:

1. The participants in this study consisted of teachers from a single central California school district who were participants in a 3-year mathematics grant focused on fifth and sixth grade students.
2. The teachers represented various years of experience. No consideration was given if the teachers with more or less experience had different perceptions concerning the implementation of discourse.

Summary

The following topics were discussed in Chapter I in order to establish a foundation for this study:

1. Students in the United States need to have a factual, procedural, and conceptual understanding of mathematics to be successful in the future.
2. Students in the United States score below average in mathematical assessments when compared to other industrial countries.
3. Mathematical literacy is enhanced by an instructional approach known as discourse, which is defined as the use of social and academic communication to agree, disagree, reason, and navigate a context.
4. Specific instructional practices and norms need to be established for
productive and equitable discourse to occur.

5. Common Core Standards support the need for increasing the rigor of instruction through writing and speaking.

6. CST mathematical trends show the number of students meeting proficiency has declined starting at third grade and decreasing sharply at fifth grade and sixth grade.

7. CST mathematical trends show that the achievement gap for the number of ELs meeting proficiency has increased especially in grades sixth and seventh.

8. The purpose of this study is to identify effective teaching strategies and norms that integrate discourse in instruction.

9. The purpose of this study is to identify which instructional strategies best promote equity for ELs in their learning.

Chapter II contains a review of selected literature providing a framework of instructional strategies and classroom environments that support the development of mathematical literacy and promote discourse. In addition, Chapter II contains literature that provides background for instructional practices and norms that create an equitable learning environment for ELs. Chapter III describes the methodology of the study. Chapter IV reports the results of the study, and Chapter V provides a summary of the study and recommendations.
CHAPTER II

REVIEW OF THE LITERATURE

In this chapter, selected literature will be reviewed to provide context for pedagogical theories as they relate to the establishment of classroom norms during the implementation of discourse in Grades 5 and 6 mathematics classrooms, particularly for English Learners (ELs). Norms can be defined as accustomed ways of perceiving, believing, evaluating, and acting in an environment (Evertson & Poole, 2003). Classroom norms are the routines and procedures that teachers and students employ in the daily operation of the classroom and are developed by consensus at the beginning of the school year.

Moreover, the literature suggests that social norms promote equity for all students. Examples of social norms include showing respect and using listening skills during classroom discussions. Mathematical social norms include cooperating while solving problems and persevering during challenging concepts. (Yackel, Cobb & Wood, 1991; Boaler & Humphreys, 2005).

Equity is defined as “providing underserved students extra experiences, resources, knowledge, skills, and language so they may gain equal access to future educational and professional opportunities” (Zwiers & Crawford, 2011, p. 21). Discourse promotes equity by empowering students to be more independent in sharing and shaping their ideas.
Pedagogical Framework

Vygotsky’s theory of social constructivism stressed the role of social interaction in the development of cognition. Vygotsky believed that student learning progresses when teachers support students at their zone of proximal development by scaffolding through discussion. Vygotsky's social constructivism emphasized the importance of culture and social context for cognitive development (Vygotsky, 1978; Atherton, 2011).

The most effective teaching exhibits strong pedagogical content knowledge supported by a systematic theoretical framework. Traditional pedagogy advocates a controlled, teacher-directed learning environment to provide students with structured practice and reinforcement of concepts. In contrast, Staub and Stern (2002) found that teachers with a constructivist cognitive belief system showed higher student academic achievement gains than those teachers with more traditional belief systems. Cognitive-constructive pedagogy postulates that mastery is acquired when students restructure and build upon prior learning. Staub and Stern found that cognitive-constructive teachers are more likely to design lessons with higher demanding tasks and interactive learning environments where students and teacher can share ideas.

Mathematical reform proponents support the constructive perspective—the belief that students build their learning by interacting with their peers and teacher. Constructive classrooms delimit rote memorization of procedures and emphasize problem solving so that students build greater mathematical understanding through academic discourse (Draper, 2002). Additionally, reform teaching integrates
cognitively demanding tasks that promote conceptual understanding by encouraging students to communicate mathematical ideas through conjecturing, problem solving, and exploring mathematical ideas. Reform-based instruction is a child-centered teacher-learner interaction utilizing discourse to influence student learning (NCTM, 2000).

Discourse

In the past few decades, NCTM has advised educators to emphasize discourse in their classrooms. Discourse is the process of writing or speaking to explain, justify, and argue ideas and concepts. Research has shown that students benefit by hearing what their peers think (Boaler & Humphreys, 2005; Chapin et al., 2003). Additionally, the process of transferring thoughts into words helps students clarify and process their thinking. Teachers are able to scaffold learning by identifying student misunderstandings through discussions (Chapin et al., 2003). The goal of discourse is to develop students’ understanding of key concepts and to offer opportunities to model and promote mathematical reasoning (Kilpatrick et al., 2001).

Knuth and Peressini (2001) identified two functions of discourse: to provide meaning and to generate meaning. As an example of the first function, the communicator provides information directly to the listener, after which the information is acknowledged and communication ends. In contrast, the second function generates meaning by utilizing dialogic discourse, or dialogue, as a “thinking device” (Lotman, 1988, p. 36). Knuth and Peressini (2001) believed that both are important and occurred simultaneously during classroom discussions. However, when
students and teachers engaged in more dialogic discourse, students acquired a deeper understanding of mathematical concepts.

Groves and Doig (2004) analyzed the actions of two teachers during mathematics instruction to determine which procedures promoted classroom discourse. Both teachers were considered expert teachers and had participated in professional development that supported inquiry-based learning. The researchers observed their lessons and formulated commonalities that supported mathematical academic discussions. Groves and Doig discovered that both teachers had a clear focus of the conceptual framework and were successful in sustaining students’ problem solving. These teachers knew how to orchestrate the discourse in their classrooms by requiring all students to contribute toward a solution. Both teachers coordinated students’ mathematical reasoning and justification to promote a richer learning experience. Groves and Doig concluded that teachers need sufficient mathematical knowledge to strategically respond to students’ questions, errors, and explanations, and that norms for student participation and accountability must be established to facilitate conceptual understanding.

Orchestrating discourse is complex and requires teachers to make decisions about scaffolding, questioning, and correcting student responses. Students build their conceptual understanding of mathematics through justifying, explaining, and arguing ideas with peers and teacher. Clearly, in order to support student learning, teachers need to develop the knowledge and skills necessary to successfully implement discourse in their classrooms (Khisty & Chval, 2002; Groves & Doig, 2004).
Norms and Equity

First and foremost, classroom norms need to be established to create a culture of respect and accountability whereby all students feel safe to share their thinking. In addition to setting conditions for respectful talk, the teacher and students must develop discussion norms that encourage productive talk via courteous and respectful interpersonal behavior.

Boaler (2008) described the implementation of these discourse norms as creating relational equity. The researcher described the term relational equity as (1) respect for others’ ideas, (2) commitment to others’ learning, and (3) learned methods of communication and support. Boaler explained that the focus shifts away from measures of achievement and toward measures of the actions between people.

Discourse norms provide a context for learning where all students speak, listen, and respond to their peers’ ideas, thereby creating a more equitable learning environment. Additionally, students expect their ideas will be heard and considered by their peers and teacher (Chapin et al., 2003).

Yackel et al. (1991) suggested that teachers need to implement inquiry-based mathematics instruction to develop student conceptual understanding for all students. The researchers observed a second grade classroom for 1 year using a constructivist theoretical framework to interpret the social interactions of students. The framework detailed the following implications for teachers: (1) to emphasize problem solving, (2) to encourage student discourse, (3) to use student errors as learning opportunities, and (4) to allow students to persevere through confusion and disagreement during
discourse. Yackel et al. (1991) found that the quality of teacher-student interactions during academic discussions were critical in creating a safe environment for sharing mathematical thinking. The researchers concluded that the mutual development of social norms between teacher and students proved crucial toward establishing a positive learning culture during academic discussions.

Boaler (2008) compared the effectiveness of heterogeneous grouping (low achieving with high-achieving students) and homogenous grouping (low achieving with low achieving and high achieving with high achieving students) in mathematics. Boaler conducted a longitudinal 5 year study comparing different mathematical teaching approaches by analyzing the progress of 700 high school students from three California high schools. Qualitative and quantitative methods were used to assess 600 hours of observations, video tapes, interviews, questionnaires, and test scores. The data were coded to identify differences in teaching approaches and analyzed to determine how instructional time was spent. Boaler found that the majority of students experienced two types of teaching experiences: ability-grouped traditional instruction and mixed-ability, reform-based instruction. When these approaches were analyzed quantitatively, students enrolled in reform-based schools initially scored significantly lower in mathematics than students who attended ability-grouped schools ($t = 9.141; p < .001$), yet outperformed their peers after 2 years of instruction ($t = 8.304, p < .001$). Boaler concluded that relational equity resulted in students committing to the learning of others, showing respect for other ideas, and learning methods of communication and support.
Evidently, the role of teacher talk during discourse is critical in the development of classroom norms that support the relational equity for all students (Boaler, 2008; Knuth & Peressini, 2001; Yackel et al., 1991). Additionally, the implementation of reform-based instruction utilizing student discourse in heterogeneous groupings has shown to improve the achievement of ELs (Boaler, 2008; Petkova, 2009).

English Learners

A major feature of the No Child Left Behind Act (NCLB) of 2001 is to ensure that all major subgroups achieve minimum proficiency on state mandated tests. Consequently, school leaders focus on those subgroups who tend to struggle academically. ELs are one of the fastest growing populations in the United States. According to the National Clearinghouse for English Language Acquisition [NCELA](2008), the percentage of Latino ELs in U.S. public schools increased approximately 61% between 1995 and 2005. In addition 80% to 90% of ELs attending secondary schools were born in the United States. They have attended U.S. schools all of their lives, yet have not achieved enough English proficiency or content knowledge to succeed in mainstream programs (Calderón & Minaya-Rowe, 2011).

The numbers of ELs in public school continue to grow. In an effort to address this challenge, in 2001, the Common Core State Standards Initiative created guidelines for the instruction of ELs to help ensure that these students make significant academic progress each year. The CCSSO stressed that ELs should be held to the same high expectations listed in the Common Core State Standards as
other learners. Specifically, ELs are capable of participating in mathematical discourse while they learn English.

Khisty and Chval (2002) stated that “teacher talk” during discourse played a more critical role for student learning than previously considered, especially for ELs. The researchers selected two, fifth grade mathematics teachers and assessed their ability to enhance academic discussion by creating a positive environment for students. Khisty and Chval observed lessons twice a week for 1 year using audio tapes and field notes. The researchers found that Teacher A’s students consistently achieved at higher levels than Teacher B’s, including ELs. The researchers concluded that Teacher A’s implementation of discourse by establishing participation norms supported the ELs’ mastery of mathematical concepts by establishing an equitable environment.

Petkova (2009) studied teacher behavior during discourse in terms of class size, prior EL training, and the instructors’ cultural and linguistic background. The researcher analyzed observations, video-recordings, frequency counts, interviews, and teachers’ and students’ self-evaluations. Petkova observed eight Algebra I classrooms from two urban high schools that served diverse student populations. The teachers represented varied cultural backgrounds and levels of teaching experience. Petkova found that teachers modified their instruction when ELs were present in their classrooms. Moreover, the researcher discovered that teachers linked students’ limited language ability to low mathematical understanding and tended to provide ELs with lower-level questioning during discussions. The researcher concluded that
teachers need to encourage ELs’ discourse by utilizing more open-ended questions that require ELs to justify and explain their answers.

Clearly, teachers’ ability to orchestrate discourse and willingness to implement reform-based instruction are critical to educational equity for ELs in mathematics (Boaler, 2008; Petkova, 2009; Yackel et al., 1991).

Instructional Strategies

With the growing numbers of ELs in public schools, educators must determine which instructional strategies accelerate ELs’ academic progress (Rivera et al., 2010). Researchers have described specific instructional strategies that support ELs’ accountability and participation during discourse (Zwiers & Crawford, 2011; Petkova, 2009; Yackel et al., 1991). Students’ listening, speaking, and writing skills are continually monitored and adjusted during discourse. Research-based instructional strategies that support ELs’ acquisition of language and academic content include (1) wait-time, (2) choral response, (3) pair-share, (4) think-write-pair-share, (5) response and sentence starters, (6) paraphrasing, (7) affirmations, (8) scaffolding questioning, (9) justifying answers, (10) target academic vocabulary language, (11) developing discourse norms, and (12) random selection.

Wait-Time

Rowe (1986) found that elementary teachers averaged 1.5 seconds of wait-time after asking a question, and only .9 seconds after students responded. By shortening wait-time, teachers restricted students’ exploration of concepts and weakened response quality. The researcher conducted a 5-year study using video-
taped and microteaching sessions. Rowe discovered that increasing wait-time to 3 seconds or more improved the quality of classroom discourse and increased student achievement.

Choral Response

Choral response is an instructional strategy used to increase student engagement by prompting students to answer questions in unison during class discussions. Heward (1994) stated that choral response supported students’ listening and speaking skills by providing academic language practice in a nonthreatening venue.

Pair-Share and Think-Write-Pair-Share

Pair-Share is a cooperative strategy that allows students to practice their responses with a partner prior to participating in whole-class discussions. The teacher poses a question to the class. Students then compare their thinking with designated partners before sharing their ideas with the class. Pair-share allows teachers to evaluate student understanding as they monitor student discussions (Fisher & Frey, 2007).

Hollingsworth and Ybarra (2009) found that well designed lessons incorporated structured pair-share. The researchers designed Explicit Direct Instruction lessons and coached teachers on effective teaching practices to improve all students’ learning. Hollingsworth and Ybarra determined that pair-share provided multiple positive outcomes: (1) all students respond to the teachers’ questions, (2) wait-time is embedded during instruction, (3) listening and speaking is emphasized
during student-teacher interaction (4) student engagement is enhanced, (5) students’ retention of concepts improves, (6) the amount of teacher-student talk increases, (7) all students respond to teachers’ questions, (8) translation time is embedded, (9) students are attentive throughout instruction, (10) reteach is provided, (11) classroom management is improved, (12) lessons are engaging and interactive, (13) students practice academic language, and (14) the classroom environment is nonthreatening.

Likewise, think-write-pair-share is a strategy used to increase student participation and quality of responses during classroom discourse. Prior to sharing ideas with a partner, students reflect and write their responses to teacher prompts, providing students with an opportunity to interact with concepts being taught (Kinsella, 2010).

Response and Sentence Starters

Ross, Fisher, and Frey (2009) determined that students need to be explicitly taught how to engage in discourse. The researchers observed a fourth grade teacher provide response and sentence starters for her students to promote and model argumentation during science instruction. Response starters provide correct models of language and support students’ sharing of ideas. The researcher analyzed the students’ completion of a brochure to evaluate their mastery of concepts. The researchers found that response starters afforded students with practice using target vocabulary and gave students the tools to engage in productive discourse.
Paraphrasing

In their research and work with teachers, Zwiers and Crawford (2011) determined that requiring students to paraphrase during discussion accelerates ELs’ acquisition of academic language. Paraphrasing is a skill that allows students to keep track of what the speaker is saying and to organize ideas into their own words. The researchers stated that paraphrasing serves four purposes: (1) to assist partners negotiating meaning, (2) to help speakers stay focused on key points, (3) to practice listening and summarizing key points, and (4) to affirm the speaker’s ideas. Zwiers and Crawford believed that paraphrasing is a critical skill for developing listening and speaking skills and supporting ELs’ access to grade level content.

Affirmations

Kinsella (2010) stated that both students and teachers are accountable for creating a positive classroom environment where all students feel safe to participate. By providing structured modeling and practice, teachers establish affirmations as a classroom norm during argumentation. Affirmations are statements that acknowledge other points of view prior to disagreeing or contributing additional ideas.

Scaffolding Questioning

Quality questioning supports the teacher’s ability to monitor and direct student learning. Walsh and Sattes (2005) provided a research-based 5-stage questioning framework: (1) preparing the question, (2) presenting the question, (3) prompting student responses, (4) processing student responses, and (5) reflecting on questioning practices. *Scaffolding questioning* provides teachers with opportunities to utilize
students’ prior knowledge during instruction and address misconceptions through interactive dialogue. (Fisher & Frey, 2007).

Gibbons (2009) stated that many ELs are becoming disengaged and dropping out of school. The researcher identified scaffolding questioning as an effective instructional strategy for teaching ELs during science instruction. The researcher modeled scaffolding questioning to preservice teachers in a science methods course. The preservice teachers were required to describe the presentation of the strategy and how it improved science instruction. Gibbons found that leveled questioning was effective in supporting ELs’ participation during classroom discussions.

Justifying Answers

Boaler (2008) determined that certain instructional practices can promote equity between students and improve their academic achievement. Boaler conducted a longitudinal 5-year study comparing different mathematical teaching approaches by analyzing the progress of 700 students from three California high schools. Qualitative and quantitative methods were used to assess 600 hours of observations, video tapes, interviews, questionnaires, and test scores. The data were coded to identify differences in teaching approaches and analyzed to determine how instructional time was spent. Boaler found that classrooms that required students to justify their answers created learning environments that were more equitable and provided ELs with opportunities to share their thinking during discussions.
Targeting Academic Language

Zwiers (2006) determined that one of the primary reasons for the academic achievement gap in the middle grades was ELs’ lack of academic language proficiency. The researcher designed a 5-week action research project. Zwiers explored scaffolding academic language and the six dimensions of historical thinking while instructing 60 EL students in two classes. Zwiers framed his research on his reflections and observations as they related to students’ learning and the following questions: (a) What types of instructional activities appear to develop historical thinking skills and related academic language among ELs? and (b) How can teaching for a writing assessment help to shape this thinking and language development? He monitored the students’ learning growth using the quick-write technique. The researcher found that ELs needed more than lecture-based instruction; they needed targeted academic language development to access grade-level core curriculum.

Developing Discourse Norms

Zwiers and Crawford (2011) maintained that developing discourse norms with students from the start of each year supports academic discussions. Discourse norms are the procedures teachers and students adopt for sharing ideas in whole-class and small-group settings.

In addition, Yackel and Cobb (1996) stated that teachers and students need to establish social norms to promote productive discourse. The researchers developed an interpretive framework to analyze teacher-student interactions during mathematics in yearlong classroom experiments. Yackel and Cobb determined that the process of
establishing social norms during mathematical discourse supported student listening and explaining. The researchers concluded that social norms generated by teachers and students supported the listening and speaking of all students.

Random Selection

Boaler (2006) stated that students need to be held accountable for their learning, and should utilize random selection to increase participation. The researcher used video-taping, interviews, and observations to analyze teacher and student interactions. Boaler utilized small-group discussion prior to whole-class discussion while employing random selection as an instructional strategy. The researcher found that most students felt anxiety when held responsible for reporting for their group. In addition, some students felt frustrated when not given the opportunity to answer. Boaler concluded that students accept random selection when they feel safe from criticism or anger particularly when they answer incorrectly.

Summary

The achievement gap between ELs and English-only learners (EOs) continues to challenge California public school educators. Administrators and teachers need to ensure that ELs are provided with multiple opportunities to access curriculum and are assigned tasks that are cognitively challenging.

Exemplary teachers employed by one local school district may have narrowed the achievement gap by effectively orchestrating discourse to encourage all learners to participate in classroom discussions. The present study will identify and describe these teachers’ perceptions of 12 research-based instructional strategies discussed in
this chapter in terms of their effectiveness in improving ELs’ listening, speaking, and writing skills. The methodology for this study will be explained in Chapter III.
CHAPTER III
METHODS

The purpose of this study was to determine teachers’ perceptions of the instructional strategies based on discourse that are most effective in improving ELs’ listening, speaking, and writing skills. Chapter III is divided into five sections: (a) sample population, (b) instrumentation, (c) methodology, (d) data analyses, and (e) summary.

Research Design

The sample population of 33 consisted of fifth- and sixth-grade teachers employed by one K–12 unified school district in Stanislaus County. The respondents represented diverse ethnic backgrounds, and 64% of the teachers had 10 or more years of experience. The respondents participated in a 3-year mathematics grant to (a) improve their mathematical content knowledge; (b) strengthen their pedagogical knowledge of discourse; (c) utilize student assessment data to guide instruction; (d) implement lesson study methods; and (e) utilize instructional coaching to improve student learning and instructional practices. They received intensive training on the elements of implementing discourse including the establishment of classroom norms during instruction (Ford & Jones, 2008). Approximately 34% of the students served were ELs.
Instrumentation

The researcher electronically distributed a survey in January 2013. The respondents were allowed a maximum of 15 days to complete and submit their surveys to the researcher. The survey was developed by the researcher utilizing QuestionPro. Part 1 consisted of 12 statements relating to teachers’ perceptions of the effectiveness of instructional strategies used during discourse in terms of improving ELs’ listening, speaking, and writing skills. This section was completed by the respondents. The survey utilized a 5-point Likert-type interval scale (5 to 1 representing *highly effective* to *not effective*). Part 2 identified the number of years teaching and percentage of ELs in their classrooms. Part 3 consisted of an open-ended response field to allow teachers the opportunity to submit written comments. The survey was field tested by an instructional coach and two mathematics grant participants from another district, and their input was integrated into the final survey (see Appendix B). The survey instrument was submitted to the California State University, Stanislaus Institutional Review Board for approval and to the researcher’s university committee chairperson, whose recommendations were also included in the final survey. UIRB approval was received on December 15, 2012. Each statement was aligned with the study’s hypotheses to ensure consistency and fidelity.

Methodology

An electronic survey was distributed in January, 2013, to the sample population (*N = 34*). A hyperlink was embedded in an introductory e-mail message forwarded to the respondents with a request to complete and submit the survey to the
researcher within 5 days of receipt. Additionally, a Notice of Informed Consent (Appendix A) was included, which explained the voluntary nature of the survey and that confidentiality of the instrument and research study would be maintained. To protect anonymity, each survey was coded to allow the researcher to identify non-respondents. As a reminder, these individuals were sent a second e-mail message and a duplicate survey 5 days after the first distribution. A total of 33 responses were received, resulting in a return rate of 97%.

Statistical Analysis

The surveys were analyzed using the chi-square goodness of fit to determine if there was a significant difference in the distribution of the survey responses. A significance level of $p < .05$ was established for the statistical analysis.

Descriptive Analysis

The mean value the participants’ responses to each of the 12 statements was calculated, and notable findings were identified. Notable findings were defined as important outcomes that may have not been statistically significant but were deemed relevant to a thorough analysis of the data. Additionally, written open-ended comments were descriptively analyzed to identify common themes.

Summary

The researcher described the sample population, instrumentation, methodology, and statistical and descriptive analyses utilized in the study. The survey was distributed to teachers in January 2013 with the purpose of soliciting their responses to 12 statements and providing them with the opportunity to submit written
comments. The purpose of this study was to determine teachers’ perceptions of the instructional strategies based on discourse that are most effective in improving English Learners’ (ELs) listening, speaking, and writing skills. Chapter IV will present the findings and results of the research that address the objective of this study.
CHAPTER IV

RESULTS

The purpose of this study was to determine teachers’ perceptions of the instructional strategies based on discourse that are most effective in improving ELs listening, speaking, and writing skills. Chapter IV provides analyses of the participants’ responses to the survey instrument. The 33 participants represented a 97% return rate. This chapter is divided into three sections. The first section provides statistical analyses of the responses to the 12 survey statements. The second section presents participants’ responses obtained in the comments section of the survey. The final section summarizes this chapter.

Statistical Analyses

The researcher administered an electronic survey with 12 statements related to the effectiveness of certain instructional strategies in terms of the listening, speaking, and writing skills of ELs. Respondents were asked to rate their perception of the effectiveness of these strategies using a Likert-type scale (5 to 1 representing highly effective to not effective). Mean responses were illustrated both numerically and descriptively (4.51 - 5.00 was deemed highly effective; 4.01 - 4.50 was deemed effective; and 3.51 - 4.00 was deemed somewhat effective). Table 2 summarizes the results of that survey; a brief description of the results for each statement (in terms of listening, speaking and writing) follows the table. The statistical significance was set at $p < .05$.

34
Table 2

Chi-Square & Descriptive Analyses

Statement 1: Teacher utilizes wait-time.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>10.50*</td>
<td>4.52</td>
</tr>
<tr>
<td>Speaking</td>
<td>9.73*</td>
<td>4.42</td>
</tr>
<tr>
<td>Writing</td>
<td>8.72</td>
<td>3.97</td>
</tr>
</tbody>
</table>

Statement 2: Teacher utilizes choral response.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>8.17*</td>
<td>4.12</td>
</tr>
<tr>
<td>Speaking</td>
<td>5.99*</td>
<td>4.30</td>
</tr>
<tr>
<td>Writing</td>
<td>4.58</td>
<td>3.64</td>
</tr>
</tbody>
</table>

Statement 3: Teacher utilizes pair-share.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>8.69*</td>
<td>4.41</td>
</tr>
<tr>
<td>Speaking</td>
<td>9.49*</td>
<td>4.41</td>
</tr>
<tr>
<td>Writing</td>
<td>6.37</td>
<td>4.16</td>
</tr>
</tbody>
</table>
Statement 4: Teacher provides response and sentence starters.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>6.80</td>
<td>3.88</td>
</tr>
<tr>
<td>Speaking</td>
<td>6.67*</td>
<td>4.47</td>
</tr>
<tr>
<td>Writing</td>
<td>5.38</td>
<td>4.38</td>
</tr>
</tbody>
</table>

Statement 5: Teacher scaffolds questioning.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>4.98</td>
<td>4.19</td>
</tr>
<tr>
<td>Speaking</td>
<td>6.67</td>
<td>4.23</td>
</tr>
<tr>
<td>Writing</td>
<td>6.83</td>
<td>4.16</td>
</tr>
</tbody>
</table>

Statement 6: Teacher utilizes think-write-pair-share.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>7.63</td>
<td>4.16</td>
</tr>
<tr>
<td>Speaking</td>
<td>6.99</td>
<td>4.26</td>
</tr>
<tr>
<td>Writing</td>
<td>6.83</td>
<td>4.19</td>
</tr>
</tbody>
</table>
Statement 7: Teacher requires students to justify their answers.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>10.84*</td>
<td>4.58</td>
</tr>
<tr>
<td>Speaking</td>
<td>10.92*</td>
<td>4.81</td>
</tr>
<tr>
<td>Writing</td>
<td>9.16 *</td>
<td>4.71</td>
</tr>
</tbody>
</table>

Statement 8: Teacher requires students to paraphrase.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>9.24*</td>
<td>4.45</td>
</tr>
<tr>
<td>Speaking</td>
<td>8.43*</td>
<td>4.42</td>
</tr>
<tr>
<td>Writing</td>
<td>8.43*</td>
<td>4.26</td>
</tr>
</tbody>
</table>

Statement 9: Teacher scaffolds target academic language.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>9.16*</td>
<td>4.68</td>
</tr>
<tr>
<td>Speaking</td>
<td>9.32*</td>
<td>4.71</td>
</tr>
<tr>
<td>Writing</td>
<td>8.52 *</td>
<td>4.68</td>
</tr>
</tbody>
</table>
Statement 10: Teacher requires students to use affirmations.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>6.66</td>
<td>4.03</td>
</tr>
<tr>
<td>Speaking</td>
<td>6.67</td>
<td>4.06</td>
</tr>
<tr>
<td>Writing</td>
<td>6.66</td>
<td>3.84</td>
</tr>
</tbody>
</table>

Statement 11: Teacher develops discourse norms with students.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>6.33*</td>
<td>4.48</td>
</tr>
<tr>
<td>Speaking</td>
<td>7.55*</td>
<td>4.52</td>
</tr>
<tr>
<td>Writing</td>
<td>4.98 *</td>
<td>4.23</td>
</tr>
</tbody>
</table>

Statement 12: Teacher utilizes random selection during discussions.

<table>
<thead>
<tr>
<th></th>
<th>Chi-Square Value</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>7.63</td>
<td>4.29</td>
</tr>
<tr>
<td>Speaking</td>
<td>7.63</td>
<td>4.16</td>
</tr>
<tr>
<td>Writing</td>
<td>5.06</td>
<td>3.74</td>
</tr>
</tbody>
</table>

*p < .05
Statement 1: Teacher Utilizes Wait-Time

 Listening. There was a significant difference in the distribution of responses
 \((\chi^2 = 10.50, df = 3, p < .05, M = 4.52) \). Hence, teachers perceived that wait-time was
 highly effective in developing ELs’ listening skills.

 Speaking. There was a significant difference in the distribution of responses
 \((\chi^2 = 9.73, df = 3, p < .05, M = 4.42) \). Hence, teachers perceived that wait-time was
 effective in developing ELs’ speaking skills.

 Writing. There was no significant difference in the distribution of responses
 \((\chi^2 = 8.72, df = 4, p < .05, M = 3.97) \). Hence, teachers perceived that wait-time was
 somewhat effective (though not significantly) in developing ELs’ writing skills.

Statement 2: Teacher Utilizes Choral Response.

 Listening. There was a significant difference in the distribution of responses
 \((\chi^2 = 8.17, df = 3, p < .05, M = 4.12) \). Hence, teachers perceived that choral response was
 effective in developing ELs’ listening skills.

 Speaking. There was a significant difference in the distribution of responses
 \((\chi^2 = 5.99, df = 2, p < .05, M = 4.30) \). Hence, teachers perceived that choral response was
 effective in developing ELs’ speaking skills.

 Writing. There was no significant difference in the distribution of responses
 \((\chi^2 = 4.58, df = 3, p < .05, M = 3.64) \). Teachers perceived that choral response was
 somewhat effective (though not significantly) in developing ELs’ writing skills.
Statement 3: Teacher Utilizes Pair-Share.

Listening. There was a significant difference in the distribution of responses
\[\chi^2 = 8.61, df = 3, p < .05, M = 4.41 \]. Hence, teachers perceived that pair-share was
effective in developing ELs’ listening skills.

Speaking. There was a significant difference in the distribution of responses
\[\chi^2 = 9.50, df = 3, p < .05, M = 4.41 \]. Hence, teachers perceived that pair-share was
effective in developing ELs’ speaking skills.

Writing. There was no significant difference in the distribution of responses
\[\chi^2 = 6.37, df = 3, p < .05, M = 4.16 \]. Hence, teachers perceived that pair-share was
effective (though not significantly) in developing ELs’ writing skills.

Statement 4: Teacher Provides Response And Sentence Starters.

Listening. There was no significant difference in the distribution of responses
\[\chi^2 = 7.30, df = 3, p < .05, M = 3.88 \]. Hence, teachers perceived that response and
sentence starters were somewhat effective (though not significantly) in developing
ELs’ listening skills.

Speaking. There was a significant difference in the distribution of responses
\[\chi^2 = 6.67, df = 3, p < .05, M = 4.47 \]. Hence, teachers perceived that response and
sentence starters were effective in developing ELs’ speaking skills.

Writing. There was no significant difference in the distribution of responses
\[\chi^2 = 5.38, df = 3, p < .05, M = 4.38 \]. Hence, teachers perceived that sentence and
response starters were effective (though not significantly) in developing ELs’ writing
skills.
Statement 5: Teacher Scaffolds Questioning.

Listening. There was no significant difference in the distribution of responses ($\chi^2 = 4.98$, $df = 2$, $p < .05$, $M = 4.19$). Hence, teachers perceived that scaffolding questioning was effective (though not significantly) in developing ELs’ listening skills.

Speaking. There was no significant difference in the distribution of responses ($\chi^2 = 6.67$, $df = 3$, $p < .05$, $M = 4.23$). Hence, teachers perceived that scaffolding questioning was effective (though not significantly) in developing ELs’ speaking skills.

Writing. There was no significant difference in the distribution of responses ($\chi^2 = 6.83$, $df = 3$, $p < .05$, $M = 4.16$). Hence, teachers perceived that scaffolding questions was effective (though not significantly) in developing ELs’ writing skills.

Statement 6: Teacher Utilizes Think-Write-Pair-Share

Listening. There was no significant difference in the distribution of responses ($\chi^2 = 7.43$, $df = 3$, $p < .05$, $M = 4.16$). Hence, teachers perceived that utilizing think-write-pair-share was effective (though not significantly) in developing ELs’ listening skills.

Speaking. There was no significant difference in the distribution of responses ($\chi^2 = 6.98$, $df = 3$, $p < .05$, $M = 4.26$). Hence, teachers perceived that utilizing think-write-pair-share was effective (though not significantly) in developing ELs’ speaking skills.
Writing. There was no significant difference in the distribution of responses ($\chi^2 = 6.83$, $df = 3$, $p < .05$, $M = 4.19$). Hence, teachers perceived that utilizing think-write-pair-share was effective (though not significantly) in developing ELs’ writing skills.

Statement 7: Teacher Requires Students to Justify Their Answers.

Listening. There was a significant difference in the distribution of responses ($\chi^2 = 9.24^*$, $df = 3$, $p < .05$, $M = 4.45$). Hence, teachers perceived that requiring students to justify their answers was effective in developing ELs’ listening skills.

Speaking. There was a significant difference in the distribution of responses ($\chi^2 = 10.92$, $df = 3$, $p < .05$, $M = 4.81$). Hence, teachers perceived that requiring students to justify their answers was highly effective in developing ELs’ speaking skills.

Writing. There was a significant difference in the distribution of responses ($\chi^2 = 9.16$, $df = 2$, $p < .05$, $M = 4.71$). Hence, teachers perceived that requiring students to justify their answers was highly effective in developing ELs’ writing skills.

Statement 8: Requires Students To Paraphrase.

Listening. There was a significant difference in the distribution of responses ($\chi^2 = 9.24$, $df = 3$, $p < .05$, $M = 4.45$). Hence, teachers perceived that requiring students to paraphrase was effective in developing ELs’ listening skills.

Speaking. There was a significant difference in the distribution of responses ($\chi^2 = 8.43$, $df = 3$, $p < .05$, $M = 4.42$). Hence, teachers perceived that requiring students to paraphrase was effective in developing ELs’ speaking skills.
Writing. There was a significant difference in the distribution of responses ($\chi^2 = 8.43$, $df = 3$, $p < .05$, $M = 4.19$). Hence, teachers perceived that requiring students to paraphrase was effective in developing ELs’ writing skills.

Statement 9: Teacher Scaffolds Target Academic Language.

Listening. There was a significant difference in the distribution of responses ($\chi^2 = 9.16$, $df = 2$, $p < .05$, $M = 4.68$). Hence, teachers perceived that scaffolding target academic language was highly effective in developing ELs’ listening skills.

Speaking. There was a significant difference in the distribution of responses ($\chi^2 = 9.32$, $df = 2$, $p < .05$, $M = 4.71$). Hence, teachers perceived that scaffolding target academic language was highly effective in developing ELs’ speaking skills.

Writing. There was significant difference in the distribution of responses ($\chi^2 = 8.52$, $df = 2$, $p < .05$, $M = 4.68$). Hence, teachers perceived that scaffolding target academic language was highly effective in developing ELs’ writing skills.

Statement 10: Teacher Requires Students to Use Affirmations.

Listening. There was no significant difference in the distribution of responses ($\chi^2 = 6.66$, $df = 3$, $p < .05$, $M = 4.03$). Hence, teachers perceived that requiring students to use affirmations was effective (though not significantly) in developing ELs’ listening skills.

Speaking. There was no significant difference in the distribution of responses ($\chi^2 = 6.67$, $df = 3$, $p < .05$, $M = 4.06$). Hence, teachers perceived that requiring students to use affirmations was effective (though not significantly) in developing ELs’ speaking skills.
Writing. There was no significant difference in the distribution of responses \((\chi^2 = 6.66, df = 3, p < .05, M = 3.84)\). Hence, teachers perceived that requiring students to use affirmations was somewhat effective (though not significantly) in developing ELs’ writing skills.

Statement 11: Teacher Develops Discourse Norms With Students.

Listening. There was a significant difference in the distribution of responses \((\chi^2 = 6.33^*, df = 2, p < .05, M = 4.48)\). Hence, teachers perceived that developing discourse norms with students was effective in developing ELs’ listening skills.

Speaking. There was a significant difference in the distribution of responses \((\chi^2 = 7.55^*, df = 2, p < .05, M = 4.52)\). Hence, teachers perceived that developing discourse norms with students was highly effective in developing ELs’ speaking skills.

Writing. There was no significant difference in the distribution of responses \((\chi^2 = 7.55^*, df = 2, p < .05, M = 4.23)\). Hence, teachers perceived that developing discourse norms with students was effective (though not significantly) in developing ELs’ writing skills.

Statement 12: Teacher Utilizes Random Selection During Discussions.

Listening. There was no significant difference in the distribution of responses \((\chi^2 = 7.63, df = 3, p < .05, M = 4.29)\). Hence, teachers perceived that utilizing random selection during discussions was effective in developing ELs’ listening skills.

Speaking. There was no significant difference in the distribution of responses \((\chi^2 = 7.63, df = 3, p < .05, M = 4.16)\). Hence, teachers perceived that utilizing random
selection during discussions was effective (though not significantly) in developing ELs’ speaking skills.

Writing. There was no significant difference in the distribution of responses ($\chi^2 = 5.06$, $df = 3$, $p < .05$, $M = 3.74$). Hence, teachers perceived that utilizing random selection during discussions was somewhat effective (though not significantly) in developing ELs’ writing skills.

Descriptive Analyses

The mean responses were ranked in descending order to differentiate between most effective and least effective strategies, as shown in Table 3.

Table 3

Listening: Mean Responses Ranked in Descending Order

<table>
<thead>
<tr>
<th>Survey Statements</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Teacher scaffolds target academic language.</td>
<td>4.68</td>
</tr>
<tr>
<td>7. Teacher requires students to justify their answers.</td>
<td>4.58</td>
</tr>
<tr>
<td>1. Teacher utilizes wait-time.</td>
<td>4.52</td>
</tr>
<tr>
<td>11. Teacher develops discourse norms with students.</td>
<td>4.48</td>
</tr>
<tr>
<td>8. Teacher requires students to paraphrase.</td>
<td>4.45</td>
</tr>
<tr>
<td>3. Teacher utilizes pair-share.</td>
<td>4.41</td>
</tr>
<tr>
<td>12. Teacher utilizes random selection during discussions.</td>
<td>4.29</td>
</tr>
<tr>
<td>5. Teacher scaffolds questioning.</td>
<td>4.19</td>
</tr>
<tr>
<td>6. Teacher utilizes think-write-pair-share.</td>
<td>4.16</td>
</tr>
<tr>
<td>2. Teacher utilizes choral response.</td>
<td>4.12</td>
</tr>
<tr>
<td>10. Teacher requires students to use affirmations.</td>
<td>4.03</td>
</tr>
</tbody>
</table>
4. Teacher provides response and sentence starters. 3.88

The participants’ mean responses to the twelve statements pertaining to ELs’ listening skills ranged from 3.88 to 4.68. The participants perceived that Statement 9: Teacher scaffolds target academic language ($M = 4.68$) and Statement 7: Teacher require students to justify their answers ($M = 4.58$) are highly effective strategies that support ELs’ listening skills. The participants perceived that Statement 10: Teacher requires students to use affirmations, and Statement 4: Teacher provides response and sentence starters are somewhat effective strategies that support ELs’ listening skills.

Table 4

Speaking: Mean Responses Ranked in Descending Order

<table>
<thead>
<tr>
<th>Survey Statements</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Teacher requires students to justify their answers.</td>
<td>4.81</td>
</tr>
<tr>
<td>9. Teacher scaffolds target academic language.</td>
<td>4.71</td>
</tr>
<tr>
<td>11. Teacher develops discourse norms with students.</td>
<td>4.52</td>
</tr>
<tr>
<td>4. Teacher provides response and sentence starters.</td>
<td>4.47</td>
</tr>
<tr>
<td>1. Teacher utilizes wait-time.</td>
<td>4.42</td>
</tr>
<tr>
<td>8. Teacher requires students to paraphrase.</td>
<td>4.42</td>
</tr>
<tr>
<td>3. Teacher utilizes pair-share.</td>
<td>4.41</td>
</tr>
<tr>
<td>2. Teacher utilizes choral response.</td>
<td>4.30</td>
</tr>
<tr>
<td>6. Teacher utilizes think-write-pair-share.</td>
<td>4.26</td>
</tr>
<tr>
<td>5. Teacher scaffolds questioning.</td>
<td>4.23</td>
</tr>
</tbody>
</table>
12. Teacher utilizes random selection during discussions. 4.16
10. Teacher requires students to use affirmations. 4.06

The participants’ mean responses to the twelve statements pertaining to ELs’ speaking skills ranged from 4.06 to 4.81, as shown in Table 4. The participants perceived that Statement 7: Teacher requires students to justify their answers ($M = 4.81$), Statement 9: Teacher scaffolds target academic language ($M = 4.71$) and Statement 11: Teacher develops discourse norms with students ($M = 4.52$) are highly effective strategies that support ELs’ speaking skills. The participants perceived that Statement 12: Teacher utilizes random selection during discussions ($M = 4.16$) and Statement 10: Teacher requires students to use affirmations ($M = 4.06$) were effective strategies that supported ELs’ speaking skills.

Table 5

Writing: Mean Responses Ranked in Descending Order

<table>
<thead>
<tr>
<th>Survey Statements</th>
<th>Mean Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Teacher requires students to justify their answers.</td>
<td>4.71</td>
</tr>
<tr>
<td>9. Teacher scaffolds target academic language.</td>
<td>4.68</td>
</tr>
<tr>
<td>4. Teacher provides response and sentence starters.</td>
<td>4.38</td>
</tr>
<tr>
<td>8. Teacher requires students to paraphrase.</td>
<td>4.26</td>
</tr>
<tr>
<td>11. Teacher develops discourse norms with students.</td>
<td>4.23</td>
</tr>
<tr>
<td>6. Teacher utilizes think-write-pair-share.</td>
<td>4.19</td>
</tr>
<tr>
<td>3. Teacher utilizes pair-share.</td>
<td>4.16</td>
</tr>
<tr>
<td>5. Teacher scaffolds questioning.</td>
<td>4.16</td>
</tr>
</tbody>
</table>
1. Teacher utilizes wait-time. 3.97
10. Teacher requires students to use affirmations. 3.84
12. Teacher utilizes random selection during discussions. 3.74
2. Teacher utilizes choral response. 3.64

The participants’ mean responses to the 12 statements pertaining to ELs’ writing skills ranged from 3.64 to 4.71, as shown in Table 5. The participants strongly agreed that Statement 7: Teacher requires students to justify their answers ($M = 4.71$), and Statement 9: Teacher scaffolds target academic language ($M = 4.68$) are discourse strategies that are highly effective in supporting ELs’ speaking skills. The participants perceived that Statement 12: Teacher utilizes random selection during discussions ($M = 3.74$) and Statement 2: Teacher utilizes choral response ($M = 3.64$) were somewhat effective in supporting ELs’ writing skills.

Common Themes from Comments

Participants had the opportunity to provide optional, open-ended comments, which are summarized in Table 6. The most commonly mentioned themes are listed in descending order of frequency.

Table 6

<table>
<thead>
<tr>
<th>Common Themes</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students provided visuals and realia.</td>
<td>8</td>
</tr>
<tr>
<td>Teachers design lessons with structured concept development.</td>
<td>3</td>
</tr>
<tr>
<td>Teachers provide cognitively demanding tasks.</td>
<td>3</td>
</tr>
</tbody>
</table>
The open-ended comments were coded for strategies not included in the survey statements. Teachers perceived that providing visuals and realia supported ELs’ listening, speaking, and writing skills. Additionally, participants indicated the importance of lesson design that included structured concept development and cognitively demanding tasks. Moreover, participants perceived that requiring multiple representations, frequently checking for understanding, and providing a narrow focus improved ELs’ listening, speaking, and writing skills.

Summary

This chapter presented the results of 33 surveys completed by the respondents. Chapter V summarizes the results, presents conclusions, and provides recommendations for site administrators and further study.
CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The purpose of this study was to determine teachers’ perceptions of the instructional strategies based on discourse that are most effective in improving English Learners’ (ELs) listening, speaking, and writing skills. The researcher established three null hypotheses to guide the analysis of the data:

\[H_1 \] – There is no significant difference in the distribution of responses on a survey of teachers’ perceptions of effective instructional strategies based on discourse in terms of ELs’ listening skills.

\[H_2 \] – There is no significant difference in the distribution of responses on a survey of teachers’ perceptions of effective instructional strategies based on discourse in terms of ELs’ speaking skills.

\[H_3 \] – There is no significant difference in the distribution of responses on a survey of teachers’ perceptions of effective instructional strategies based on discourse in terms of ELs’ writing skills.

Discourse was defined as written or spoken debate. ELs were defined as students who achieved annual progress toward English fluency as measured by the California English Language Development Test (CELDT).

Chapter V provides a summary of results from Chapter IV, presents conclusions, and offers recommendations for practitioners and future studies.
Summary

In the subcategory of *Listening*, there were significant differences in the distribution of responses on 6 of the 12 survey statements: Statement 1: Teacher utilizes wait-time; Statement 2: Teacher utilizes choral response; Statement 3: Teacher utilizes pair-share; Statement 8: Teacher requires students to paraphrase; Statement 9: Teacher scaffolds target academic language; and Statement 10: Teacher develops discourse norms with students. The mean responses indicated that teachers perceived Statement 9: Teacher scaffolds target academic language \((M = 4.68)\), Statement 7: Teacher requires students to justify their answers \((M = 4.58)\), and Statement 1: Teacher utilizes wait-time \((M = 4.52)\) as highly effective in terms of improving students’ listening skills.

In the subcategory of *Speaking*, there were significant differences in the distribution of responses on 8 of the 12 survey statements: Statement 1: Teacher utilizes wait-time, Statement 2: Teacher utilizes choral response, Statement 3: Teacher utilizes pair-share, Statement 4: Teacher provides response and sentence starters, Statement 7: Teacher requires students to justify their answers, Statement 8: Teacher requires students to paraphrase, Statement 9: Teacher scaffolds target academic language, and Statement 11: Teacher develops discourse norms with students. The mean responses indicated that teachers perceived Statement 7: Teacher requires students to justify their answers \((M = 4.81)\), Statement 9: Teacher scaffolds target vocabulary language \((M = 4.71)\), and Statement 11: Teacher develops discourse
norms with students \((M = 4.52) \) as highly effective in terms of improving students speaking skills.

In the subcategory of Writing, there were significant differences in the distribution of responses on 3 of the 12 survey statements: Statement 7: Teacher requires students to justify their answers, Statement 8: Teacher requires students to paraphrase, and Statement 9: Teacher scaffolds target academic language. The mean responses indicated that teachers perceived Statement 7: Teacher requires students to justify their answers \((M = 4.71) \), and Statement 9: Teacher scaffolds target vocabulary language \((M = 4.68) \) as highly effective in terms of improving students’ writing skills.

Common Themes from Comments

Comments from the teachers described the following common themes in terms of improving ELs’ listening, speaking, and writing skills: (a) teachers utilize realia and visuals during discussions, (b) lessons are designed with structured concept development, (c) teachers choose tasks that are relevant and cognitively demanding, (d) teachers model and implement formal debate and discourse, and (e) teachers provide a narrow focus with frequent checks for understanding.

Conclusions

The purpose of this study was to determine exemplary teachers’ perceptions of the instructional strategies based on discourse that are most effective in improving ELs’ listening, speaking, and writing skills. The literature suggests that ELs should be held to the same high expectations listed in the Common Core State Standards as other learners. Researchers believe that ELs should participate in discourse while they
learn English (Khisty & Chval, 2002). Clearly, there is a need for research that describes effective discourse instructional strategies that best support ELs during instruction.

Listening Skills

In the subcategory of *Listening* there were significant differences in the distribution of responses on 7 of the 12 survey statements. The mean responses ranged from 3.88 to 4.68, indicating that participants perceived the 12 instructional strategies as highly effective, effective, and somewhat effective in improving ELs’ listening skills. The participants perceived the following statements as *highly effective*: Statement 9: Teacher scaffolds target academic language \((M = 4.68)\), Statement 7: Teacher requires students to justify their answers \((M = 4.58)\), and Statement 1: Teacher utilizes wait-time \((M = 4.52)\).

The literature validates the findings of the present study that targeting academic vocabulary, requiring students to justify their answers, and utilizing wait-time may improve ELs’ listening skills. Zwiers (2006) stated that ELs need structured vocabulary development to access core curriculum. Teachers who target academic vocabulary while developing key concepts are more successful in lowering the achievement gap. In addition, Boaler (2006) found that teachers who require students to justify their answers were more successful in lowering the achievement gap. When students articulate their thinking, they interact with their teacher and peers to connect and build on concepts. This process supports other students by giving them another opportunity to hear ideas and correct misconceptions. Finally, Rowe (1986), as well
as Hollingsworth and Ybarra (2009) stated that teachers who provide wait-time for students supported ELs’ listening skills and increase the quality of their responses. The researchers determined that wait-time provides students with the opportunity to process their thoughts and helps promote productive discourse during discussions.

Speaking Skills

In the subcategory of *Speaking* there were significant differences in the distribution of responses on 8 of the 12 survey statements. The mean responses ranged from 4.06 to 4.81 indicating that participants perceived the 12 instructional strategies as highly effective and effective in improving ELs’ speaking skills. The participants perceived the following statements as highly effective: Statement 7: Teacher requires students to justify their answers (*M* = 4.81), Statement 9: Teacher scaffolds target academic language (*M* = 4.71), and Statement 11: Teacher develops discourse norms with students (*M* = 4.52).

The literature validates the findings of the present study that requiring students to justify their answers, targeting academic language and developing discourse norms may improve ELs’ speaking skills. Boaler (2008) determined that when students are required to justify their thinking they become increasingly fluent sharing their answers. The process of articulating their ideas provides students with numerous opportunities to interact with their teacher and peers. The researcher believes that when students practice sharing their ideas, they become more natural at using academic language and processing their thinking. Additionally, Zwiers (2006) stated that targeting academic language during lessons supports ELs’ access to the
core curriculum. By requiring students to practice targeted academic language in discussions, students increase their academic language proficiency and understand essential concepts being taught. Finally, Zwiers and Crawford (2011) maintained that developing discourse norms with students increases the likelihood of productive class discussions. The researchers stated that when teachers and students develop classroom norms for discourse, more students participate and explore their ideas during whole-class discussions.

Writing Skills

In the subcategory of **Writing**, there were significant differences in the distribution of responses on 3 of the 12 survey statements. The mean responses ranged from 3.64 to 4.71, indicating that participants perceived the 12 instructional strategies as highly effective, effective or somewhat effective in supporting ELs’ writing skills. The participants perceived the following statements as highly effective: Statement 7: Teacher requires students to justify their answers ($M = 4.71$), and Statement 9: Teacher scaffolds target academic language ($M = 4.68$) as highly effective in terms of improving students’ writing skills.

The literature supports the findings of this study that requiring students to justify their answers and targeting academic language supports ELs’ writing skills. Boaler (2008) stated that when students justify their answers, they become fluent at expressing their ideas. Additionally, Zwiers and Crawford (2011) found that students are able to develop academic vocabulary and conceptual understanding while they
explain their thinking. Students’ ability to articulate their ideas through speaking allows them to write more effectively.

Recommendations

As school districts move toward implementing the Common Core State Standards, administrators must continue to address the challenges ELs face in accessing core content areas. Exemplary teachers from one local unified school district continue to demonstrate that the achievement gap can be narrowed by incorporating research-based instructional strategies. The following are the researcher’s recommendations for practitioners and school leaders based on the findings of this study:

1. Focus on ELs’ reasoning, not the correctness of their answers.
2. Encourage ELs to justify their answers.
3. Support ELs by targeting academic language.
4. Use ELs’ language and experiences as resources.
5. Provide professional development to enhance teachers’ ability to support ELs as students develop language and content knowledge.
7. Find curriculum that includes cognitively demanding tasks and make learning relevant to students.
8. Develop discourse norms that create equitable and safe learning environments where all students are accountable for participating and sharing ideas.
The researcher suggests the following areas for future research and study:

1. Interview and observe exemplary teachers who have effectively implemented discourse and raised ELs’ academic achievement in their classrooms.

2. Research ways to motivate students to actively participate in classroom discussions.

3. Investigate instructional strategies for targeting academic vocabulary, and examine how these strategies improve ELs’ listening, speaking, and writing skills.
REFERENCES
REFERENCES

APPENDIX A

INFORMED CONSENT

Title of Project: Teachers’ Perceptions of Effective Instructional Strategies Based on Discourse in Terms of Improving English Learners’ Listening, Speaking and Writing Skills

Dear Participant:

You are being asked to participate in a research project that is being done to fulfill requirements for a Master’s degree in Education at CSU Stanislaus. We hope to determine the effectiveness of selected research-based instructional discourse strategies in terms of improving English Learners’ (ELs) listening, speaking, and writing skills. If you volunteer, you will be asked to complete a survey.

There are no risks to you for your participation in this study.

It is possible that you will not benefit directly by participating in this study. The information collected will be protected from all inappropriate disclosure under the law. All data will be kept in a secure location.

There is no cost to you beyond the time and effort required to complete the procedure(s) described above. Your participation is voluntary. Refusal to participate in this study will involve no penalty or loss of benefits. You may withdraw at any time without penalty or loss of benefits.

If you agree to participate, please indicate this decision by signing below. If you have any questions about this research project please contact me, Donna Clarke, at (209) 872-6160 or my faculty sponsor, Chet Jensen at (209) 667-3747. If you have any questions regarding your rights and participation as a research subject, please contact the Campus Compliance Officer by phone (209) 667-3747 or e-mail IRBAadmin@csustan.edu.

Sincerely,

Donna Clarke

Participant Signature: ______________________________ Date: _______________
APPENDIX B

SURVEY

The Effectiveness of Instructional Strategies on EL Learning

Thank you for taking the time to complete the following survey about instructional practices. I have selected twelve research-based instructional strategies related to discourse for you to consider. Please rate the perceived effectiveness of each strategy based on improving your English Learners’ (EL) listening, speaking and writing skills. If you believe the strategy is highly effective, select 5. If you believe the strategy is not effective, select 1.

1. Teacher utilizes **wait-time**.

<table>
<thead>
<tr>
<th></th>
<th>Listening</th>
<th>Speaking</th>
<th>Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Not Effective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Teacher utilizes **choral response**.

<table>
<thead>
<tr>
<th></th>
<th>Listening</th>
<th>Speaking</th>
<th>Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Not Effective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Teacher utilizes **pair-share**.

<table>
<thead>
<tr>
<th></th>
<th>Listening</th>
<th>Speaking</th>
<th>Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Not Effective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Teacher provides **response and sentence starters**.

<table>
<thead>
<tr>
<th></th>
<th>Listening</th>
<th>Speaking</th>
<th>Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Not Effective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Teacher scaffolds **questioning**.

<table>
<thead>
<tr>
<th></th>
<th>Listening</th>
<th>Speaking</th>
<th>Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Not Effective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Teacher utilizes **think-write-pair-share**.

<table>
<thead>
<tr>
<th></th>
<th>Listening</th>
<th>Speaking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Not Effective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Teacher requires students to **justify their answers**.

<table>
<thead>
<tr>
<th>Highly Effective</th>
<th>Not Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Speaking</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Writing</td>
<td>5 4 3 2 1</td>
</tr>
</tbody>
</table>

8. Teacher requires students to **paraphrase**.

Listening	5 4 3 2 1
Speaking	5 4 3 2 1
Writing	5 4 3 2 1

9. Teacher scaffolds **target academic language**.

Listening	5 4 3 2 1
Speaking	5 4 3 2 1
Writing	5 4 3 2 1

10. Teacher requires students to **use affirmations**.

Listening	5 4 3 2 1
Speaking	5 4 3 2 1
Writing	5 4 3 2 1

11. Teacher develops **Discourse norms with students**.

Listening	5 4 3 2 1
Speaking	5 4 3 2 1
Writing	5 4 3 2 1

12. Teacher utilizes **random selection during discussions**.

Listening	5 4 3 2 1
Speaking	5 4 3 2 1
Writing	5 4 3 2 1